Quickstart with OVADARE

This guide will help you set up OVADARE in minutes to detect and resolve conflicts in your multi-agent systems.


Prerequisites

Ensure you have the following:

  • Python 3.7 or higher installed.
  • A multi-agent platform like AutoGen integrated with your project.
  • OVADARE installed. If not, follow the Installation Guide.

Step 1: Import OVADARE into Your Project

Start by importing the required modules from OVADARE:

from ovadare.agents.agent_registry import AgentRegistry
from ovadare.conflicts.conflict_detector import ConflictDetector
from ovadare.resolution.resolution_engine import ResolutionEngine

Step 2: Register Your Agents

Register the agents you want OVADARE to monitor. For example:

agent_registry = AgentRegistry()

agent_registry.register_agent(
    agent_id="lead_researcher",
    capabilities={"analyze_data": True, "prepare_reports": True}
)

agent_registry.register_agent(
    agent_id="sales_strategist",
    capabilities={"create_sales_strategy": True, "evaluate_trends": True}
)

Step 3: Detect Conflicts

Set up the Conflict Detector to analyze actions and identify potential conflicts:

conflict_detector = ConflictDetector(agent_registry)

conflicts = conflict_detector.detect(
    agent_id="lead_researcher",
    action={"task": "create_sales_strategy", "resource": "market_data"}
)

if conflicts:
    print("Conflicts detected:", conflicts)
else:
    print("No conflicts detected.")

Step 4: Resolve Conflicts

Use the Resolution Engine to resolve detected conflicts dynamically:

resolution_engine = ResolutionEngine(agent_registry)

resolutions = resolution_engine.generate_resolutions(conflicts)

for resolution in resolutions:
    print("Resolution applied:", resolution)

Step 5: Iterate and Improve

Integrate feedback from conflict resolution to refine your policies and improve collaboration between agents. Explore how to define custom policies in the Policy Management Guide.


Explore More

Ready to dive deeper? Check out: